环境:
ubuntu 22.04
cuda 12.4.1
英伟达 3060-12GB显卡
1、 安装包下载
https://github.com/lightvector/KataGo/releases
https://github.com/lightvector/KataGo/releases/download/v1.15.3/katago-v1.15.3-cuda12.1-cudnn8.9.7-linux-x64.zip
2、神经网络数据
https://katagotraining.org/networks/
目前最新权重
https://media.katagotraining.org/uploaded/networks/models/kata1/kata1-b28c512nbt-s9584861952-d4960414494.bin.gz
3、 开始安装
mkdir -p /kp-data/katago
cd /kp-data/katago
wget https://github.com/lightvector/KataGo/releases/download/v1.15.3/katago-v1.15.3-cuda12.1-cudnn8.9.7-linux-x64.zip
unzip katago-v1.15.3-cuda12.1-cudnn8.9.7-linux-x64.zip
下载神经网路数据到当前目录:
wget https://media.katagotraining.org/uploaded/networks/models/kata1/kata1-b28c512nbt-s9584861952-d4960414494.bin.gz
安装依赖
wget http://archive.ubuntu.com/ubuntu/pool/universe/libz/libzip/libzip5_1.5.1-0ubuntu1_amd64.deb
wget http://archive.ubuntu.com/ubuntu/pool/main/o/openssl/libssl1.1_1.1.1f-1ubuntu2_amd64.deb
dpkg -i libssl1.1_1.1.1f-1ubuntu2_amd64.deb
dpkg -i libzip5_1.5.1-0ubuntu1_amd64.deb
安装cudnn
进入CuDNN官网,选择合适的版本下载压缩包。
https://developer.nvidia.com/cudnn-archive#
选择:
Download cuDNN v8.9.7 (December 5th, 2023), for CUDA 12.x
https://developer.nvidia.com/downloads/compute/cudnn/secure/8.9.7/local_installers/12.x/cudnn-linux-x86_64-8.9.7.29_cuda12-archive.tar.xz
解压之后,分别进入 include 以及 lib 目录中,将如下文件拷贝到之前 CUDA 的安装目录下。
sudo cp (你的目录)/include/cudnn.h /usr/local/cuda-12.4/include/
sudo cp (你的目录)/lib/libcudnn* /usr/local/cuda-12.4/lib64/
sudo chmod a+r /usr/local/cuda-12.4/include/cudnn.h
sudo chmod a+r /usr/local/cuda-12.4/lib64/libcudnn*
验证CuDNN是否安装成功,可以结合Pytorch查看,输出如下信息则证明安装成功。
python
import torch
print(torch.backends.cudnn.version())
安装TensorRT
https://developer.nvidia.com/tensorrt/download/10x
wget https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.12.0/tars/TensorRT-10.12.0.36.Linux.x86_64-gnu.cuda-12.9.tar.gz
tar -xvf TensorRT-10.12.0.36.Linux.x86_64-gnu.cuda-12.9.tar.gz
cp -rp TensorRT-10.12.0.36/lib/* /usr/local/cuda-12.4/lib64/
修改环境变量
vim /root/.bashrc #文件最后增加
export PATH=/usr/local/cuda-12.4/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH="/usr/local/cuda-12.4/lib64:$LD_LIBRARY_PATH"
source /root/.bashrc
安装:
/kp-data/katago
/kp-data/katago/katago genconfig -model kata1-b28c512nbt-s9584861952-d4960414494.bin.gz -output gtp_custom.cfg
选择:(其他都默认)
Chinese
选完了程序就开始各种运行尝试,过几分钟分钟后出现done,说明运行结束。在当前前文件夹下生成文件gtp_custom.cfg,你想改成其它名字当然也没问题。
启动:
./katago gtp -model 'kata1-b28c512nbt-s9584861952-d4960414494.bin.gz' -config 'gtp_custom.cfg'
4、sabaki连接katago
windows10为例:
系统下载plink到D:/盘
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html #找到plink.exe, 64-bit x86类型解压安装。
系统下载sabaki:
https://github.com/SabakiHQ/Sabaki/releases/download/v0.52.2/sabaki-v0.52.2-win-x64-setup.exe
sabaki配置语言:
file->preferences->language (选择简体中文) #关闭重启
sabaki配置引擎:
引擎->显示引擎侧边栏->管理引擎
sabaki配置远程连接:
ikaopu #第一行取名名字
D:\plink\plink\plink.exe #第二行填写plink 路径
-ssh -batch -P 28511 root@ikp.ikaopu.cn -pw 9aBP9cgKFptgbSf8wXUX9cW5Nuq5Xfrp "/root/katago/katago gtp -model '/root/katago/kata1-b28c512nbt-s9584861952-d4960414494.bin.gz' -config '/root/katago/gtp_custom.cfg'" #第三行参数
time_settings 0 5 1 #第四行也是参数,两边对阵,每5秒输入一子